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Fields of de�nition of abelian subvarieties

par Séverin Philip

Résumé. Dans cet article on étudie le corps de dé�nition d'une

sous-variété abélienne B ⊂ AK pour une variété abélienne A sur

un corps K de caractéristique 0. Sous quelques conditions tech-

niques sur A, on montre qu'il existe une in�nité de sous-variétés

abéliennes de AK dont le corps de dé�nition est celui des en-

domorphismes géométriques de A. Ce résultat couplé avec un

théorème de Rémond donne une valeur explicite au maximum des

minimum des degrés d'extensions de corps sur lesquels une sous-

variété abélienne de AK est dé�nie, le maximum étant pris sur

toutes les variétés abéliennes A de dimension �xée sur un corps

de caractéristique 0.

Abstract. In this paper we study the �eld of de�nition of abelian

subvarieties B ⊂ AK for an abelian variety A over a �eld K of

characteristic 0. We show that, provided that no isotypic compo-

nent of AK is simple, there are in�nitely many abelian subvari-

eties of AK whose �eld of de�nition is the one of the geometric

endomorphisms of A. This result combined with earlier work of

Rémond gives an explicit maximum for the minimal degree of a

�eld extension over which an abelian subvariety of AK is de�ned

with varying A of �xed dimension and K of characteristic 0.

1. Introduction

Let A be an abelian variety over a �eld K of characteristic zero. If B
is an abelian subvariety of AK we recall that there exists a smallest �nite
extension L/K such that B is de�ned as a subvariety of AL over L. By
this, we mean that there is a subvariety C of AL such that CK = B. We
will call this �eld L, which is �nite over K, the �eld of de�nition of B. We
are interested in this paper in the link between L and the �eld of de�nition
of the endomorphisms of AK , that we will note KA, which is a �nite Galois
extension of K. The �rst remark is that every abelian subvariety B of AK is
the image of some endomorphism ϕ and thus we have an inclusion L ⊂ KA.
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Our goal is to show that equality can and usually does happen. We prove
the following theorem.

Theorem 1.1. Let A be an abelian variety over a �eld K of characteristic

zero, r ≥ 1 an integer and n1, . . . , nr integers greater or equal to 2 such

that AK is isogenous to a product
r∏
i=1

Cnii for simple pairwise non isogenous

abelian varieties Ci over K. For all r-uples of integers (k1, . . . , kr) with

ki ∈ {1, . . . , ni− 1} for each i ∈ {1, . . . , r} there are in�nitely many abelian

subvarieties B of AK isogenous to
r∏
i=1

Ckii with �eld of de�nition KA.

The main result of [4] gives a bound on the degree [KA : K] as a function
of the dimension g of A, namely we have

[KA : K] ≤ f(g)

where f(g) = 2α(g)6g−1g! with α(g) = 1 if g /∈ {2, 4, 6} and α(2) = 2,
α(4) = 5, α(6) = 7/6.

Theorem 1.1. of [4] also gives examples of abelian varieties that reach
the bound. Combined with our work this allows us to compute the max-
imum of the degree of the extension given by the �eld of de�nition of an
abelian subvariety, the maximum being taken over all abelian varieties of a
given dimension over characteristic zero �elds. The statement, given as the
following corollary, complements Proposition 4.2 of [1].

Corollary 1.2. Let g ≥ 2 be a positive integer and A an abelian variety

of dimension g over a �eld K of characteristic zero. Then for any abelian

subvariety B ⊂ AK with �eld of de�nition L we have

[L : K] ≤ f(g).

Moreover, there are an abelian variety A of dimension g over Q and an

abelian subvariety B ⊂ AQ with �eld of de�nition L such that

[L : Q] = f(g).

The �rst part of the statement is Proposition 4.2 of [1]. The second part
is a direct consequence of Theorem 1.1 applied to the abelian varieties given
by the main result of [4]. Indeed, let us �x g ≥ 2 and let A over Q be given
by Theorem 1.1 of [4] such that [QA : Q] = f(g) and AQ ' Eg with E an

elliptic curve over Q of equation y2 = x3−x or y2 = x3−1 depending on g.
Applying Theorem 1.1 with r = 1, k1 = 1 gives L = QA hence the result.

Remark 1.3. The following example shows that in the statement of The-
orem 1.1 the indices ni in the isotypic decomposition of A can not be cho-
sen equal to 1. Let E be the elliptic curve over Q given by the equation
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y2 = x3 − x and C the one given by the equation y2 = x3 + 3x − 2. One
can check the following equalities

QE = Q(i),

QC = Q,

EndEQ = Z[i],

EndCQ = Z,

so that E is CM and C is not.
Consider now the abelian variety A = E × C2. We have QA = Q(i)

but there is no abelian subvariety of AQ whose �eld of de�nition is Q(i).

Moreover by looking at A′ = E2 × C2 we get that one cannot expect to
choose one of the indices ki to be equal to ni.

The idea of the proof of Theorem 1.1 is to see the set of abelian subva-
rieties corresponding to a choice of {k1, . . . , kr} as the rational points of an
arithmetic Grassmannian over which the absolute Galois group of K acts by
algebraic morphisms. This will show that the abelian subvarieties that have
many Galois transforms correspond to the points outside a proper closed
subset and this means that a generic subvariety �ts the theorem. The action
of the Galois group will be made through the automorphisms of a simple
algebra.

The �rst part of the paper is thus devoted to some preliminaries on linear
algebra over skew �elds. Speci�cally we study the automorphisms of Mn(D)
for a skew �eld D and their natural action on the right vector subspaces of
Dn. In order to do so we will show that such an automorphism is always of
the form fσ where f is the conjugation by an element of GLn(D) and σ is
an automorphism of D.

These considerations will allow us to de�ne, for an automorphism of
Mn(D), an action on the Grassmann variety Grk,n(D) which is compatible
with its natural action on the right ideals of Mn(D).

Finally, the Galois action of Gal(K/K) on subvarieties factors through
the �nite group Gal(KA/K) and translates into an action on the ideals of
EndAK ⊗Q which from the previous construction yields an action on the
Grassmannian. The last piece is the correspondence between the abelian
subvarieties of AK and right ideals of EndAK ⊗Q given by

B ⊂ AK 7−→ IB = {ϕ ∈ EndAK | Imϕ ⊂ B} ⊗Q.

Using this, the result comes down to the fact that the �xed points of a non
trivial element of G are given by the rational points of a closed subvariety
properly contained in the Grassmannian which is irreducible. The �nite
union of those sets cannot cover it and by density of the rational points we
�nd in�nitely many subvarieties that �t our needs.
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2. Automorphisms of simple algebras

We start by recalling a result on right ideals of a matrix algebra Mn(D)
over a skew �eld D. For the rest of this section we �x a skew �eld D of
�nite dimension over Q and a positive integer n. Let {e1, . . . , en} be the
canonical basis of Dn. We identify matrices in this basis and linear maps.

Proposition 2.1. There is a bijective correspondence between right ideals

of Mn(D) and right vector subspaces of Dn.

The correspondence is given in the following way, we refer to Proposition
13.1 of [5] for details. Let V be a right vector subspace of Dn. We map it
to the right ideal IV given by the set of linear maps Dn → Dn with image
in V . Given a right ideal I we have a vector subspace VI given by the sum
of the images of the elements of I. Moreover one can prove that there is an
idempotent element φ ∈ I such that VI = Imφ and I is generated by φ as
a right ideal. From this we deduce the equality

I =

n⊕
i=1

VI

which states that I is the set of matrices with elements of VI as vector
columns.

Let σ ∈ AutQD. We can naturally extend σ to an automorphism of
Mn(D) by letting it act on the entries of the matrices. With the previous

description of right ideals of Mn(D) we get that if I =
n⊕
i=1

VI is a right ideal,

then

σ(I) =

n⊕
i=1

σ(VI)

so that σ(I) is mapped through our bijection to σ(VI).

We now turn to AutQ Mn(D) to understand its action on the right sub-
spaces of Dn. Let F be the center of D, it is a �nite extension of Q. We
have exact sequences

1 // AutFMn(D) // AutQMn(D) // AutQF ;

1 // AutFD // AutQD // AutQF .
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The last arrow on the right is the restriction map. We also have the exten-
sion map that makes the following triangle commute

AutQMn(D) // AutQF

AutQD

Ext

OO 88
.

We next show that we get in this way a good set of preimages of the re-
striction morphism AutQ Mn(D)→ AutQ F . We start with a lemma.

Lemma 2.2. Let F be a �eld, A a simple F -algebra and σ ∈ AutQ F .

There is an automorphism Φ of A such that Φ|F = σ if and only if

A⊗Fσ F ' A

where F is seen as an F -algebra via σ.

Proof. First let us assume A⊗Fσ F ' A. By de�nition of the tensor prod-
uct there is an algebra homomorphism Φ such that the following diagram
commutes

A
Φ // A

F

OO

σ // F

OO

the vertical arrows being the inclusions. As A is simple and Φ nonzero it is
an automorphism and the diagram gives the desired condition.

Now let Φ ∈ AutQA such that Φ|F = σ. We show that A is the tensor
product A ⊗Fσ F . Let C be an F -algebra given by a map i : F → C and
let α : A→ C, β : F → C be maps such that the diagram

C

A

β //

Φ // A

??

F

OO

σ // F

OO α

OO

commutes. It is a direct check that β ◦ Φ−1 is the dotted arrow and thus
the proof is complete. �

Let σ be an automorphism of F such that there is a Φ ∈ AutQ Mn(D)
with Φ|F = σ. By Lemma 2.2 for Φ and the simple algebra Mn(D) we have
an isomorphism

Mn(D) ' Mn(D)⊗Fσ F ' Mn(D ⊗Fσ F )
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and so we get D ' D ⊗Fσ F by the uniqueness statement of the theorem
of Wedderburn on simple algebras (see Theorem 1.9 of Chapter 8 of [6]).
Using Lemma 2.2 again, this time for D, we conclude that σ lifts to an
automorphism of D.

We can now choose a set Σ of representatives of the lifts of automorphisms
of F to Mn(D) and from the previous remark we can furthermore impose
that for all σ in the image of the map AutQ Mn(D) → AutQ F there is
τ ∈ Σ such that τ = Ext θ for some lift θ ∈ AutQD of σ to D.

We can now state the theorem we aimed at.

Theorem 2.3. Let f ∈ AutQ Mn(D). There are a P ∈ GLn(D) and a

unique σ ∈ Σ such that for all M ∈ Mn(D) we have

f(M) = Pσ(M)P−1.

Proof. Let f|F = σ, it is an automorphism of F, and denote again σ the lift

of σ to Mn(D) that is in Σ. As f|F = σ|F we have fσ−1 ∈ AutF Mn(D).
By the theorem of Skolem-Noether there is a matrix P ∈ GLn(D) such
that fσ−1 is given by conjugation by P . This gives the existence of the
decomposition.

For the unicity, take M = xI for x ∈ F . We have

f(M) = Pσ(M)P−1 = σ(x)I

so that if τ ∈ Σ is another lift that works we get τ|F = σ|F . �

In the rest of the text we will choose a pair (P, σ) ∈ GLn(D) × Σ given
by Theorem 2.3 for any f ∈ AutQ Mn(D). For such an f we have a natural
action on ideals of Mn(D) given by I 7→ f(I). By Lemma 2.1 this action
induces an action on the vector subspaces of Dn mapping a subspace V to
the subspace associated with the ideal f(IV ). If f is given by (P, σ) we get
f(V ) = Pσ(V ) where P acts on the left.

We end this section by a useful lemma (that is classical in the context of
vector spaces over �elds) that tells us when this action is trivial.

Lemma 2.4. Let P ∈ GLn(D), σ ∈ Σ and k ∈ {1, . . . , n − 1}. If for all

right vector subspaces V of Dn of dimension k we have Pσ(V ) = V then P
is a central homothety and σ is the identity.

Proof. We argue by induction on k. If k = 1 as σ �xes the canonical basis
(ei)i∈{1,...,n} of D

n we have P (ei) = eiλi for some λi ∈ D×. For 1 ≤ j ≤ n

there exists µj ∈ D× such that

Pσ(e1 + ej) = (e1 + ej)µj = e1λ1 + ejλj

by the hypothesis. It follows that µj = λ1 = λj and that P is the left
multiplication by λ = λ1 so an homothety. Let x ∈ D and consider the line
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L = (e1 + e2x)D. We have Pσ(L) = L and Pσ(L) = λσ(e1 + e2x)D. The
vector e1 + e2x is on that line, which gives µ ∈ D× with

e1 + e2x = (e1λ+ e2λσ(x))µ = e1λµ+ e2λσ(x)µ.

Using again the fact that the (ei) form a basis we get µ = λ−1 and λσ(x)µ =
x. Hence we get σ|F = id so that σ = id. This now gives x = λxλ−1 for all
x ∈ D which is the fact that P is a central homothety.

We now assume k > 1. Let V,U be two right vector subspaces of Dn of
dimension k. We have Pσ(V ) = V and Pσ(U) = U so

Pσ(V ) ∩ Pσ(U) = U ∩ V
and as Pσ is a bijection

U ∩ V = Pσ(U ∩ V ).

The result follows from the induction as any subspace of dimension k− 1 is
the intersection of two subspaces of dimension k. �

The converse of the statement is straightforward.

3. The arithmetic Grassmannian

In this section we recall a construction of the Grassmannian over a skew
�eld. It is closely related to Severi-Brauer varieties as de�ned in [5] chap-
ter 13.

Let us consider the algebraic group GLdn overQ where d is the degree [D :
Q]. We will repeatedly use the following fact (compare with Proposition
II.4.5 of [2] which deals with a cyclic subgroup of rational points):

if G is an algebraic group over a characteristic 0 �eld K and S a subgroup

of G(K) that is closed for the induced topology, there exists a unique closed

algebraic subgroup H of G such that H(K) = S and H(K) is dense in H.

Through the choice of a Q-basis of D, the group GLn(D) is a closed
subgroup of theQ-points of GLdn and by the fact there is a unique algebraic
subgroup of GLdn, that we write GLn,D, such that its Q-points are GLn(D)
and they are dense in GLn,D.

There is a natural action of GLn(D) on the right vector subspaces of Dn

of dimension 1 ≤ k ≤ n− 1. Let V0 be a right vector subspace of dimension
k of Dn. The stabilizer StabV0 is a closed subgroup of GLn,D(Q) and the
fact applies so that StabV0 is the Q-points of a unique closed subgroup of
GLn,D that we write StabV0 again.

De�nition 3.1. We de�ne the Grassmann variety Grk,n(D) to be the quo-
tient GLn,D/StabV0. It is an irreducible variety over Q that do not depend
on the choice of V0 and itsQ-points Grk,n(D)(Q) = GLn,D(Q)/(StabV0)(Q)
are dense in it.
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The last equality can be shown as in the proof of Proposition 13.2 of [5].

Let I be an ideal of Mn(D), f ∈ AutQ Mn(D) associated to (P, σ) and
V the right vector subspace corresponding to I, assume V is of dimension
k. We turn the action of f on V into an action of f on Grk,n(D). Let
ϕ ∈ GLn(D) be such that ϕ(V0) = V and ϕσ ∈ GLn(D) such that σ(V0) =
ϕσ(V0). We have that

f(V ) = Pσ(V ) = Pσ(ϕ)ϕσV0

as we can check explicitly by taking a basis of V0.
It follows that we have a map

af : GLn(D) −→ GLn(D) −→ Grk,n(D)(Q)

ϕ 7−→ Pσ(ϕ)ϕσ 7−→ Pσ(ϕ)ϕσ

This map comes from an algebraic Q-morphism af : GLn,D → Grk,n(D).
We now check that it is constant on the equivalence classes so that it induces
a map on the quotient. For Q-points ϕ and ψ of GLn,D in the same class
we have by de�nition

ϕ(V0) = ψ(V0)

and so by construction af (ϕ) = af (ψ). The result follows as the Q-points
are dense. From this we get a map af : Grk,n(D) → Grk,n(D) such that if
I is an ideal of Mn(D) associated to ϕ then f(I) is associated to af (ϕ).

We can thus de�ne a closed subscheme Fixf of Grk,n(D) as the equalizer

of id and af (i.e. the largest closed subscheme over which id and af agree)
which represents the points of the Grassmannian �xed by the action of f .
By Lemma 2.4 this subscheme is properly contained in Grk,n(D) whenever
f 6= id. We have a description of the Q-points of this subscheme as

Fixf (Q) = {v ∈ Grk,n(D)(Q) | f · v = v}.

4. Existence of abelian subvarieties with KA as �eld of de�nition

First we recall the correspondence between ideals of the algebra EndAK⊗
Q and abelian subvarieties of AK for an abelian variety A over a character-
istic zero �eld K.

Proposition 4.1. Let A be an abelian variety over a �eld K. There is

a bijective correspondence between right ideals of EndAK ⊗Q and abelian

subvarieties of AK in the following way. An abelian subvariety B of AK is

associated with the ideal

IB = {ϕ ∈ EndAK | Imϕ ⊂ B} ⊗Q
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and to a right ideal I of EndAK ⊗Q we associate the abelian subvariety

BI =
∑

ϕ∈I∩EndAK

Imϕ.

This proposition can be deduced from Lemma 2.2 of [3] with C = A.

There are two important corollaries that will be used for our main result.

Corollary 4.2. Let A be an abelian variety over a characteristic zero �eld

K and C a simple abelian variety over K with an isogeny

ϕ : AK −→ Cn

for some positive integer n. Let D be the skew �eld EndC ⊗Q. The map

ϕ identi�es EndAK ⊗ Q and Mn(D). An abelian subvariety B of AK is

isogenous to C` where ` is the dimension of the right vector subspace of Dn

associated to IB by Proposition 2.1.

Proof. The ideal IB is mapped through Proposition 2.1 to

V = Hom(C,B)⊗Q.

From the fact that C is a simple abelian variety we also have that B is
isogenous to C` for some `. We prove that ` = dimD V . The isogeny
between B and C` gives isomorphisms of Q-vector spaces

Hom(C,B)⊗Q ' Hom(C,C`)⊗Q ' End(C)` ⊗Q ' D`.

It follows that V and D` have the same dimension over Q and thus the
same dimension over D. �

Corollary 4.3. Let A be an abelian variety over a characteristic zero �eld

K and B an abelian subvariety of AK . Let L be a �nite extension of K.

The right ideal IB of EndAK ⊗Q is stable for the action of Gal(K/L) if

and only if so is B.

Proof. We show that the bijection from Theorem 4.1 is compatible with the
action of the Galois group Gal(K/K).

For σ ∈ Gal(K/K) and ϕ ∈ EndAK we have

σ(Imϕ) = Imσ(ϕ)

since

σ(Imϕ) = σ({ϕ(x) | x ∈ A(K)}) = {σ(ϕ)(σ(x)) | x ∈ A(K)} = Imσ(ϕ).

This gives directly σ(BI) = Bσ(I), hence the statement. �

We now start working towards the proof of our main theorem. The
geometrical part of the proof is contained in the following statement.
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Theorem 4.4. Let D be a skew �eld of �nite dimension over Q and G a

�nite subgroup of AutQ Mn(D). Then for all k ∈ {1, . . . , n − 1} there are

in�nitely many right ideals I of Mn(D) associated to vector subspaces V of

dimension k which are stable by no element of G \ {1}.

Proof. By Theorem 2.3 we may write elements of G as couples (P, σ) where
P ∈ GLn(D) and σ ∈ Σ. A right ideal I is stable by an element g ∈ G if
and only if g · I = Pσ(I) = I hence if and only if Pσ(VI) = VI . Consider
the set

S = {v ∈ Grk,n(D)(Q) | ∃g ∈ G \ {1}, g · v = v}
of vector subspaces of dimension k that are stable by at least one non trivial
element of G. We have

S =
⋃

g∈G\{1}

{v ∈ Grk,n(D)(Q) | g · v = v}

=
⋃

g∈G\{1}

Fixg(Q).

By the end of Section 3, Grk,n(D) \
⋃

g∈G\{1}
Fixg is a non-empty open

subscheme by irreducibility and thus contains in�nitely many Q-points by
density. These points yield vector subspaces ofDn which in turn yield ideals
with the desired property. �

The last ingredient is provided by the following combinatorial lemma.

Lemma 4.5. Let S1, . . . , Sr be sets and Hi ⊂ AutSi subgroups such that

for any �nite subgroup Gi ⊂ Hi the set

{s ∈ Si | ∀λ ∈ Gi \ {id}, λs 6= s}

is in�nite. Then if G ⊂ Aut(
r∏
i=1

Si) is a �nite subgroup such that for all

g ∈ G there exist τg ∈ Sr and bijections λg,i : Sτ−1
g (i) → Si with{

g(s1, . . . , sr) = (λg,1(sτ−1
g (1)), . . . , λg,r(sτ−1

g (r)))

if τg(i) = i then λg,i ∈ Hi

the set

F = {s ∈
r∏
i=1

Si | ∀g ∈ G \ {id}, gs 6= s}

is in�nite.

Proof. Set Gi = {λ ∈ Hi | ∃g ∈ G, τg(i) = i, λg,i = λ}. This is a �nite
subgroup of Hi as G is �nite. We show that we can build elements of F by
induction with in�nitely many choices at each step. Assume we have chosen
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the �rst i − 1 coordinates, s1, . . . , si−1, of a candidate. Then we need to
choose si such that

(i) ∀λ ∈ Gi \ {id}, λ(si) 6= si
(ii) ∀j, 1 ≤ j ≤ i− 1, ∀g ∈ G with τ−1

g (i) = j, si 6= λg,i(sj).

As the second condition removes only �nitely many choices (G being �nite)
and there are in�nitely many choices satisfying (i) from the hypothesis on
the Hi, we can choose in�nitely many si that �t our need and conclude by
induction on i. �

We are now able to prove Theorem 1.1.

Proof. Let k1, . . . , kr be integers satisfying the conditions of the statement.
The absolute Galois group Gal(K/K) acts on the semi-simple algebra

A = EndAK ⊗ Q through its �nite quotient Gal(KA/K) which identi�es
with a �nite subgroup G of AutQA. By Corollary 4.3 we are led to look
for ideals I of A which are stable by no element of G \ {1}. Since AK is

isogenous to
r∏
i=1

Cnii we have an isomorphism ϕ : A '
r∏
i=1

Mni(Di) for some

skew �elds Di.
Now let Si = {right ideals I ⊂ Mni(Di) | dimDi VI = ki} and Hi ⊂

AutSi the subgroup of those bijections induced by automorphisms of the
algebra Mni(Di). Theorem 4.4 states that these sets and subgroups satisfy
the conditions of Lemma 4.5. Now we prove that G satis�es the remaining
conditions. Let g ∈ G and let e1 = (1, 0, . . . , 0), . . . , er = (0, . . . , 0, 1)

be the primitive central idempotents of
r∏
i=1

Mni(Di). Let τg ∈ Sr be the

permutation induced by g on the ei. As g is an algebra automorphism if
τg(i) = j then g induces an isomorphism Mni(Di) → Mnj (Dj) and so a
bijection Si → Sj which we set to be λg,j . From this setting we see that

Lemma 4.5 applies and we get in�nitely many ideals I of
r∏
i=1

Mni(Di) stable

by no element of G \ {1} and such that

I = I1 × · · · × Ir

with dimDi VIi = ki. Given one such ideal I let B be the abelian subvariety

of AK given by ϕ−1(I). By Corollary 4.2, B is isogenous to
r∏
i=1

Ckii and

Corollary 4.3 gives that the �eld of de�nition ofB isKA by construction. �
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